第575页

既然优点这么多、潜力巨大的发电技术,为什么很少听说有应用?

因为温差发电有一个致命的缺陷——效率太低。

现有最好的温差发电材料,其热效率只有常规火力发电厂的一半不到,比地热发电的效率还低(地热发电效率在6~18左右),这么低的热效率,那些资本家又不是傻叉,怎么会做这种亏本买卖。

不过黄豪杰在翻阅到一篇发表在 nature 上的论文时,发现这篇论文给了他给不少的启发。

这篇论文是由西洲联盟—奥地利维也纳工业大学 ernst bauer 教授领衔的研究团队发表的。

论文之中的数据显示,他们实现了温差发电材料的关键性能指标——热电优值系数(zt 值)的翻倍。

他们开发的热电材料具有高达 5 到 6 的热电优值系数,而之前最好的材料一般也只有大约 25 到 28。

黄豪杰顿时重点关注起来,让忠将这个团队关于热电材料的资料收集起来,不一会一大堆资料出现在他全息电脑里面。

温差发电要想提高热电效率,就必须要提高热电材料的 zt 值,只有zt值达到或者超过 4,这种技术才具有商用价值。然而,热电效应发现 100 多年过去了,科学家们连 3 都很难达到。

为什么热电材料的 zt 值这么难提高?这要从温差发电技术所依赖的物理原理——热电效应本身说起。

金属或者半导体的内部存在有一定数量的载流子(比如电子或者空穴),而这些载流子的密度会随着温度的变化而出现变化,如果物体的一端温度高,另一端温度低,就会在同一个物体中间出现不同的载流子密度。

只要可以维持物体两端的温差,就能使载流子持续扩散,从而形成稳定的电压,这便是温差发电的原理。

而温差发电的效率,取决于热电材料的三个重要的特性:

第一、塞贝克系数(材料在有温度差的情况下产生电动势的能力),塞贝克系数越高,相同的温差下产生的电动势就越高,意味着能够发出来的电就越多。

第二、电导率(材料的导电性),电导率越高,电子在材料内部就可以越容易地扩散。

第三、热导率(材料的导热系数),热导率越高,热量就可以更快速地从热端传递到冷端,从而让温差发电所依赖的温度差消失,电动势也就随之消失。